Mining Recent Frequent Itemsets in Data Streams by Radioactively Attenuating Strategy

نویسندگان

  • Lifeng Jia
  • Zhe Wang
  • Chunguang Zhou
  • Xiujuan Xu
چکیده

We propose a novel approach for mining recent frequent itemsets. The approach has three key contributions. First, it is a single-scan algorithm which utilizes the special property of suffix-trees to guarantee that all frequent itemsets are mined. During the phase of itemset growth it is unnecessary to traverse the suffix-trees which are the data structure for storing the summary information of data. Second, our algorithm adopts a novel method for itemset growth which includes two special kinds of itemset growth operations to avoid generating any candidate itemset. Third, we devise a new regressive strategy from the attenuating phenomenon of radioelement in nature, and apply it into the algorithm to distinguish the influence of latest transactions from that of obsolete transactions. We conduct detailed experiments to evaluate the algorithm. It confirms that the new method has an excellent scalability and the performance illustrates better quality and efficiency.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mining Recent Frequent Itemsets in Sliding Windows over Data Streams

This paper considers the problem of mining recent frequent itemsets over data streams. As the data grows without limit at a rapid rate, it is hard to track the new changes of frequent itemsets over data streams. We propose an efficient one-pass algorithm in sliding windows over data streams with an error bound guarantee. This algorithm does not need to refer to obsolete transactions when 316 C....

متن کامل

Incremental updates of closed frequent itemsets over continuous data streams

Online mining of closed frequent itemsets over streaming data is one of the most important issues in mining data streams. In this paper, we propose an efficient one-pass algorithm, NewMoment to maintain the set of closed frequent itemsets in data streams with a transaction-sensitive sliding window. An effective bit-sequence representation of items is used in the proposed algorithm to reduce the...

متن کامل

Mining Recent Frequent Itemsets in Data Streams with Optimistic Pruning

A data stream is a massive unbounded sequence of transactions continuously generated at a rapid rate, so how to process the transactions as fast as possible in the limited memory becomes an important problem. Although it has been studied extensively, most of the existing algorithms maintain a lot of infrequent itemsets, which causes huge space usage and inefficient update. In this paper, a new ...

متن کامل

An Efficient Algorithm for Mining Frequent Itemsets Within Large Windows Over Data Streams

Sliding window is an interesting model for frequent pattern mining over data stream due to handling concept change by considering recent data. In this study, a novel approximate algorithm for frequent itemset mining is proposed which operates in both transactional and time sensitive sliding window model. This algorithm divides the current window into a set of partitions and estimates the suppor...

متن کامل

Efficient mining of temporal emerging itemsets from data streams

In this paper, we propose a new method, namely EFI-Mine, for mining temporal emerging frequent itemsets from data streams efficiently and effectively. The temporal emerging frequent itemsets are those that are infrequent in the current time window of data stream but have high potential to become frequent in the subsequent time windows. Discovery of emerging frequent itemsets is an important pro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005